Weierstrass's final theorem of arithmetic is not final.

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Recursion Theorem (final)

Kleene’s Recursion Theorem, though provable in only a few lines, is fundamental to computability theory and allows strong self-reference in proofs. It is a fixed-point theorem in the sense that it asserts for any total computable function f , there is a number n such that n and f(n) index (or code) the same partial computable function (though we need not have f(n) = n). In this paper we will pr...

متن کامل

?Logic and Formal Ontology: Is the Final Formal Ontology Possible

Musa Akrami AbstractMany philosophers and logicians have contemplated the relationship between ontology and logic. The author of this paper, working within a Bolzanoan-Husserlian tradition of studying both ontology and logic, considers ontology as the science of the most general features of beings and the most general relations among them. He considers logic as the science concernin...

متن کامل

A small final coalgebra theorem

This paper presents an elementary and self-contained proof of an existence theorem of nal coalgebras for endofunctors on the category of sets and functions.

متن کامل

Dirichlet’s Theorem on Primes in Arithmetic Sequences Math 129 Final Paper

Dirichlet’s theorem on primes in arithmetic sequences states that in any arithmetic progression m,m + k, m + 2k, m + 3k, . . ., there are infinitely many primes, provided that (m, k) = 1. Euler first conjectured a result of this form, claiming that every arithmetic progression beginning with 1 contained an infinitude of primes. The theorem as stated was conjectured by Gauss, and proved by Diric...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Notre Dame Journal of Formal Logic

سال: 1972

ISSN: 0029-4527

DOI: 10.1305/ndjfl/1093894626